Alternating-current
circuits

Overview In earlier chapters we encountered resistors, capac-
itors, and inductors. We will now study circuits containing all three
of these elements. If such a circuit contains no emf source, the
current takes the form of a decaying oscillation (in the case of
small damping). The rate of decay is described by the Q factor. If
we add on a sinusoidally oscillating emf source, then the current
will reach a steady state with the same frequency of oscillation
as the emf source. However, in general there will be a phase dif-
ference between the current and the emf. This phase, along with
the amplitude of the current, can be determined by three methods.
The first method is to guess a sinusoidal solution to the differential
equation representing the Kirchhoff loop equation. The second is
to guess a complex exponential solution and then take the real
part to obtain the actual current. The third is to use complex volt-
ages, currents, and impedances. These complex impedances can
be combined via the same series and parallel rules that work for
resistors. As we will see, the third method is essentially the same
as the second method, but with better bookkeeping; this makes it
far more tractable in the case of complicated circuits. Finally, we
derive an expression for the power dissipated in a circuit, which
reduces to the familiar V2 /R result if the circuit is purely resistive.

8.1 A resonant circuit

A mass attached to a spring is a familiar example of an oscillator.
If the amplitude of oscillation is not too large, the motion will be a sinu-
soidal function of the time. In that case, we call it a harmonic oscillator.
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The characteristic feature of any mechanical harmonic oscillator is a
restoring force proportional to the displacement of a mass m from its
position of equilibrium, F = —kx (Fig. 8.1). In the absence of other exter-
nal forces, the mass, if initially displaced, will oscillate with unchanging
amplitude at the angular frequency w = +/k/m. But usually some kind
of friction will bring it eventually to rest. The simplest case is that of a
retarding force proportional to the velocity of the mass, dx/dt. Motion
in a viscous fluid provides an example. A system in which the restoring
force is proportional to some displacement x and the retarding force is
proportional to the time derivative dx/dt is called a damped harmonic
oscillator.

An electric circuit containing capacitance and inductance has the
essentials of a harmonic oscillator. Ohmic resistance makes it a damped
harmonic oscillator. Indeed, thanks to the extraordinary linearity of actual
electric circuit elements, the electrical damped harmonic oscillator is
more nearly ideal than most mechanical oscillators. The system we shall
study first is the “series RLC” circuit shown in Fig. 8.2. Note that there
is no emf in this circuit. We will introduce an £ (an oscillating one) in
Section 8.2.

Let QO be the charge, at time ¢, on the capacitor in this circuit. The
potential difference, or voltage across the capacitor, is V, which obvi-
ously is the same as the voltage across the series combination of induc-
tor L and resistor R. We take V to be positive when the upper capacitor
plate is positively charged, and we define the positive current direction
by the arrow in Fig. 8.2. With the signs chosen that way, the relations
connecting charge Q, current /, and voltage across the capacitor V are

dl
I=——, =CV, V=L—+RI 8.1

dt Q dt + @D
We want to eliminate two of the three variables Q, I, and V. Let us
write Q and [ in terms of V. From the first two equations we obtain
I = —CdV/dt, and the third equation becomes V = —LC(d*V/df?*) —

RC(dV/dt), or
d2V+ R dv+ ! V=0 (8.2)
dr? L) dt c) '

This equation takes exactly the same form as the F = ma equation for a
mass on the end of a spring immersed in a fluid in which the damping
force is —bv, where b is the damping coefficient and v is the velocity.
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Figure 8.1.
A mechanical damped harmonic oscillator.
I
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Figure 8.2.

A “series RLC” circuit.
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The F = ma equation for that system is —kx— bx = mX. We can compare
this with Eq. (8.2) (after multiplying through by L):

2 2
L% +Ril—‘t/+ <é> V=0 < m%+bz—f+kx=0. (8.3)
We see that the inductance L is the analog of the mass m; this element
provides the inertia that resists change. The resistance R is the analog of
the damping coefficient b; this element causes energy dissipation. And
the inverse of the capacitance, 1/C, is the analog of the spring constant
k; this element provides the restoring force. (There isn’t anything too
deep about the reciprocal form of 1/C here; we could have just as easily
defined a quantity ¢’ = 1/C, with V = C'Q.)

Equation (8.2) is a second-order differential equation with constant
coefficients. We shall try a solution of the form

V(t) = Ae ¥ cos wt, (8.4)

where A, o, and o are constants. (See Problem 8.3 for an explanation
of where this form comes from.) The first and second derivatives of this
function are

dv
i Ae_"”[ — @ coswt — a)sina)t],
v —atf, 22 :
- Ae [(oe — °) cos wt + 2aw sin a)t]. (8.5)

Substituting back into Eq. (8.2), we cancel out the common factor Ae ™%’

and are left with

. R .
(¢ — w?) cos wt + 2aw sin wt — Z(a cos wt + w sin wr)

1
+ Ic coswt = 0. (8.6)
This will be satisfied for all # if, and only if, the coefficients of sin wt and
cos wt are both zero. That is, we must require
R 1
2 2
—w" —a—+— =0. 8.7
R 7s @7

The first of these equations gives a condition on «:

w
200 — — =0 and «
L

a=— (8.8)
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We are assuming that the w in Eq. (8.4) is a real number, so ?

cannot be negative. Therefore we succeed in obtaining a solution of the
form assumed in Eq. (8.4) only if R?/4L* < 1/LC. In fact, it is the case
of “light damping,” that is, low resistance, that we want to examine, so
we shall assume that the values of R, L, and C in the circuit are such that
the inequality R < 2+/L/C holds. However, see the end of this section
for a brief discussion of the R = 2,/L/C and R > 2./L/C cases.

The function Ae™ %' cos wt is not the only possible solution; Be™
sinwt works just as well, with the same requirements, Eqs. (8.8) and
(8.9), on o and w, respectively. The general solution is the sum of these:

at

V(t) = e % (A cos wt + B sin wt) (8.10)

The arbitrary constants A and B could be adjusted to fit initial con-
ditions. That is not very interesting. Whether the solution in any given
case involves the sine or the cosine function, or some superposition, is
a trivial matter of how the clock is set. The essential phenomenon is a
damped sinusoidal oscillation.

The variation of voltage with time is shown in Fig. 8.3(a). Of course,
this cannot really hold for all past time. At some time in the past the
circuit must have been provided with energy somehow, and then left
running. For instance, the capacitor might have been charged, with the
circuit open, and then connected to the coil.

In Fig. 8.3(b) the time scale has been expanded, and the dashed
curve showing the variation of the current / has been added. For V let
us take the damped cosine, Eq. (8.4). Then the current as a function of
time is given by

10 = —¢% — acw (sinwr+ = coswr) ™. (8.11)
dt w

The ratio o/w is a measure of the damping. This is true because if o/w
is very small, many oscillations occur while the amplitude is decaying
only a little. For Fig. 8.3 we chose a case in which «/w & 0.04. Then the
cosine term in Eq. (8.11) doesn’t amount to much. All it does, in effect, is
shift the phase by a small angle, tan~! («/w). So the current oscillation is
almost exactly one-quarter cycle out of phase with the voltage oscillation.

The oscillation involves a transfer of energy back and forth from
the capacitor to the inductor, or from electric field to magnetic field. At
the times marked 1 in Fig. 8.3(b) all the energy is in the electric field.
A quarter-cycle later, at 2, the capacitor is discharged and nearly all this
energy is found in the magnetic field of the coil. Meanwhile, the circuit
resistance R is taking its toll, and as the oscillation goes on, the energy
remaining in the fields gradually diminishes.

The relative damping in an oscillator is often expressed by giving
a number called Q. This number Q (not to be confused with the charge
on the capacitor!) is said to stand for quality or quality factor. In fact, no
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one calls it that; we just call it Q. The less the damping, the larger the
number Q. For an oscillator with frequency w, Q is the dimensionless
ratio formed as follows:

energy stored
=w- 8.12
Q= average power dissipated (8.12)

Or you may prefer to remember Q as follows:

e ( is the number of radians of the argument wt (that is, 27 times the
number of cycles) required for the energy in the oscillator to diminish
by the factor 1/e.

In our circuit the stored energy is proportional to V2 or I? and, therefore,
to e 2%, So the energy decays by 1/e in a time r = 1/2«, which covers
ot = w/2a radians. Hence, for our RLC circuit, using Eq. (8.8),
0] oL
0= 20 R’
You should verify that Eq. (8.12) gives the same result.

What is Q for the oscillation represented in Fig. 8.3? The energy
decreases by a factor 1/e when V decreases by a factor 1/,/e ~ 0.6. As a
rough estimate, this decrease occurs after about two oscillations, which is
roughly 13 radians. So Q ~ 13.

A special case of the above circuit is where R = 0. In this case we
have the completely undamped oscillator, whose frequency wy is given
by Eq. (8.9) as

(8.13)

wy = —— (8.14)

Mostly we deal with systems in which the damping is small enough to
be ignored in calculating the frequency. As we can see from Eq. (8.9),
and as Problem 8.5 and Exercise 8.18 will demonstrate, light damping
has only a second-order effect on w. Note that in view of Eq. (8.3), the
1/+/LC frequency for our undamped resonant circuit is the analog of the
familiar  /k/m frequency for an undamped mechanical oscillator.

For completeness we review briefly what goes on in the overdamped
circuit, in which R > 2./L/C. Equation (8.2) then has a solution of the
form V = Ae~P" for two values of f, the general solution being

V(1) = Ae P! 4 Be= P! (8.15)

Figure 8.3.

(a) The damped sinusoidal oscillation of voltage in the RLC circuit. (b) A
portion of (a) with the time scale expanded and the graph of the current 7
included. (c) The periodic transfer of energy from electric field to
magnetic field and back again. Each picture represents the condition at
times marked by the corresponding number in (b).
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(a)

C = 0.01 microfarad

L =100 microhenrys

(b)
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Figure 8.4.

(a) With the capacitor charged, the switch is
closed at r = 0. (b) Four cases are shown, one
of which, R = 200 ohms, is the case of critical
damping.

There are no oscillations, only a monotonic decay (after perhaps one
local extremum, depending on the initial conditions). The task of Prob-
lem 8.4 is to find the values of 81 and f,.

In the special case of “critical” damping, where R = 2./L/C, we
have 81 = B». It turns out (see Problem 8.2) that in this case the solution
of the differential equation, Eq. (8.2), takes the form,

V() = (A + Bre . (8.16)

This is the condition, for given L and C, in which the total energy in the
circuit is most rapidly dissipated; see Exercise 8.23.

You can see this whole range of behavior in Fig. 8.4, where V(¢) is
plotted for two underdamped circuits, a critically damped circuit, and an
overdamped circuit. The capacitor and inductor remain the same; only
the resistor is changed. The natural angular frequency wy = 1/+/LC is
106 s~! for this circuit, corresponding to a frequency in cycles per second
of 10°/27, or 159 kilocycles per second.

The circuit is started off by charging the capacitor to a potential
difference of, say, 1 volt and then closing the switch at r =0. That is,
V=1 at t=0 is one initial condition. Also, / =0 at =0, because the
inductor will not allow the current to rise discontinuously. Therefore, the
other initial condition on V is dV/dt =0, at t = 0. Note that all four decay
curves start the same way. In the heavily damped case (R =600 ohms)
most of the decay curve looks like the simple exponential decay of an
RC circuit. Only the very beginning, where the curve is rounded over so
that it starts with zero slope, betrays the presence of the inductance L.

8.2 Alternating current

The resonant circuit we have just discussed contained no source of energy
and was, therefore, doomed to a fransient activity, an oscillation that
must sooner or later die out (unless R = 0 exactly). In an alternating-
current circuit we are concerned with a steady state, a current and voltage
oscillating sinusoidally without change in amplitude. Some oscillating
electromotive force drives the system.

The frequency f of an alternating current is ordinarily expressed
in cycles per second (or Hertz (Hz), after the discoverer' of electro-
magnetic waves). The angular frequency w = 2xf is the quantity that
usually appears in our equations. It will always be assumed to be in radi-
ans/second. That unit has no special name; we write it simply s~'. Thus
our familiar (in North America) 60 Hz current has w = 377 s~ But, in
general, @ can take on any value we choose; it need not have anything to
do with the frequency w we found in the previous section in Eq. (8.9).

L 1887, at the University of Karlsruhe, Heinrich Hertz demonstrated electromagnetic
waves generated by oscillating currents in a macroscopic electric circuit. The
frequencies were around 10° cycles per second, corresponding to wavelengths around
30 cm. Although Maxwell’s theory, developed 15 years earlier, had left little doubt that
light must be an electromagnetic phenomenon, in the history of electromagnetism
Hertz’s experiments were an immensely significant turning point.
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Our goal in this section is to determine how the current behaves in
a series RLC circuit with an oscillating voltage source. To warm up, we
consider a few simpler circuits first. In Section 8.3 we provide an alter-
native method for solving the RLC circuit. This method uses complex
exponentials in a rather slick way. In Sections 8.4 and 8.5 we generalize
this complex-exponential method in a manner that allows us to treat an
alternating-current circuit (involving resistors, inductors, and capacitors)
in essentially the same simple way that we treat a direct-current circuit
involving only resistors.

8.2.1 RL circuit
Let us apply an electromotive force £ = &y cos wt to a circuit containing
inductance and resistance. We might generate £ by a machine schemat-
ically like the one in Fig. 7.13, having provided some engine or motor
to turn the shaft at the constant angular speed w. The symbol at the left
in Fig. 8.5 is a conventional way to show the presence of an alternat-
ing electromotive force in a circuit. It suggests a generator connected in
series with the rest of the circuit. But you need not think of an electro-
motive force as located at a particular place in the circuit. It is only the
line integral around the whole circuit that matters. Figure 8.5 could just
as well represent a circuit in which the electromotive force arises from a
changing magnetic field over the whole area enclosed by the circuit.

We set the sum of voltage drops over the elements of this circuit
equal to the electromotive force &£, exactly as we did in developing
Eq. (7.66). The equation governing the current is then

dl
LE + RI = &y cos wt. (8.17)

There may be some transient behavior, depending on the initial con-
ditions, that is, on how and when the generator is switched on. But we
are interested only in the steady state, when the current is oscillating
obediently at the frequency of the driving force, with the amplitude and
phase necessary to keep Eq. (8.17) satisfied. To show that this is possible,
consider a current described by

1(t) = Iy cos(wt + @) (8.18)

To determine the constants I and ¢, we put this into Eq. (8.17):
—LIpw sin(wt + ¢) + RIy cos(wt + ¢) = &£y cos wt. (8.19)
The functions sin wt and cos wt can be separated out:

— Llyw (sin wt cos ¢ + cos wt sin ¢)
~+ RIp(cos wt cos ¢ — sinwt sin ¢) = &y cos wt. (8.20)

&y cos wt @ L

VW

R

Figure 8.5.
A circuit with inductance, driven by an
alternating electromotive force.
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The current I in the circuit of Fig. 8.5, plotted
along with the electromotive force £ on the
same time scale. Note the phase difference.

[=——— cos (a)t— tan”! %)

Setting the coefficients of sin wt and cos wt separately equal to zero gives,

respectively,
. oL
—Llywcos¢p — Rlpsing =0 — | tang = =
and
—Llywsing + Rlycos¢p — & = 0,
which gives
&o
Iy = .
Rcos¢ — wLsing
& __&pcos

- R(cos¢ +tang sing) R
Since Eq. (8.21) implies2

R
VRT+ 0?7

cos¢p =

we can write I as

&
Ip=—2
VR? + 12

(8.21)

(8.22)

(8.23)

(8.24)

(8.25)

In Fig. 8.6 the oscillations of £ and I are plotted on the same graph.
Since ¢ is a negative angle, the current reaches its maximum a bit later
than the electromotive force. One says, “The current lags the voltage in
an inductive circuit.” The quantity wL, which has the dimensions of resis-
tance and can be expressed in ohms, is called the inductive reactance.

2 The tan ¢ expression in Eq. (8.21) actually gives only the magnitude of cos ¢ and not
the sign, since ¢ could lie in the second or fourth quadrants. But since the convention
is to take I and & positive, Eq. (8.23) tells us that cos ¢ is positive. The angle ¢

therefore lies in the fourth quadrant, at least for an RL circuit.
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8.2.2 RC circuit
If we replace the inductor L by a capacitor C, as in Fig. 8.7, we have a
circuit governed by the equation

Q

—C + RI = &y cos wt, (8.26)

where we have defined Q to be the charge on the bottom plate of the
capacitor, as shown. We again consider the steady-state solution

1(t) = Iy cos(wt + ¢). (8.27)
Since I = —dQ/dt, we have
0=-— / Idt = —IZO sin(wt + ¢). (8.28)

Note that, in going from / to Q by integration, there is no question
of adding a constant of integration, for we know that Q must oscillate
symmetrically about zero in the steady state. Substituting Q back into
Eq. (8.26) leads to

I
_OC sin(wt + ¢) + Rly cos(wt + ¢p) = &y cos wt. (8.29)
w

Just as before, we obtain conditions on ¢ and Iy by requiring that the
coefficients of sin wt and cos wt separately vanish. Alternatively, we can
avoid this process by noting that, in going from Eq. (8.19) to Eq. (8.29),
we have simply traded —wL for 1/wC. The results analogous to
Eqgs. (8.21) and (8.25) are therefore

&

VRZ+ (1/wC)?

Note that the phase angle is now positive, that is, it lies in the first quad-
rant. (The result in Eq. (8.23) is unchanged, so cos ¢ is again positive.
But tan ¢ is now also positive.) As the saying goes, the current “leads
the voltage” in a capacitive circuit. What this means is apparent in the
graph of Fig. 8.8.

tan¢g = and | Iy = (8.30)

RoC

E=E&ycos mt
/7
-
/ N 7 \\
N\ Va N
\ ’ \
\ 7
\ // \\
& 1

I= 0 L

&y cos wt @ —

MW

R

Figure 8.7.
An alternating electromotive force in a circuit
containing resistance and capacitance.

Figure 8.8.

The current in the RC circuit. Compare the
phase shift here with the phase shift in the
inductive circuit in Fig. 8.6. The maximum in I
occurs here a little earlier than the

maximum in £.
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Figure 8.9.

The inductor and capacitor in series are
equivalent to a single reactive element that is
either an inductor or a capacitor, depending on
whether w?LC is greater or less than 1.

8.2.3 Transients
Mathematically speaking, the solution for the RL circuit,

& L
1(t) = L cos | wt — tan™! o~ s (8.31)
R2 + w2I2 R

is a particular integral of the differential equation, Eq. (8.17). To this
could be added a complementary function, that is, any solution of the
homogeneous differential equation,

L4 R =0 (8.32)
dt e ’

This is true because Eq. (8.17) is linear in /, so the superposition of the
particular and complementary functions is still a solution; the comple-
mentary function simply increases the right-hand side of Eq. (8.17) by
zero, and therefore doesn’t affect the equality. Now, Eq. (8.32) is just
Eq. (7.70) of Chapter 7, whose solution we found, in Section 7.9, to be
an exponentially decaying function,

1(1) ~ e~ R/, (8.33)

The physical significance is this: a transient, determined by some initial
conditions, is represented by a decaying component of /(¢), of the form
of Eq. (8.33). After a time # > L/R, this will have vanished, leaving only
the steady sinusoidal oscillation at the driving frequency, represented by
the particular integral, Eq. (8.31). This oscillation is entirely independent
of the initial conditions; all memory of the initial conditions is lost.

8.2.4 RLC circuit

To solve for the current in a series RLC circuit, a certain observation
will be helpful. The similarity of our results for the RL circuit and the
RC circuit suggests a way to look at the inductor and capacitor in series.
Suppose an alternating current I = Iy cos(wt + ¢) is somehow caused to
flow through such a combination (shown in Fig. 8.9). The voltage across
the inductor, V7, will be

dl
Vi, = LE = —IlpwLssin(wt + ¢). (8.34)

The voltage V¢ across the capacitor, with sign consistent with the sign
of Vi, is

1% Q I/Idt 1o in t+¢) (8.35)
=== _ = — sin(w . .
c="c~c wC
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The voltage across the combination is then L
Vi+Ve=— <a)L - —) Iy sin(wt + ¢). (8.36)
oC
For a given w, the combination is evidently equivalent to a single ele- £, cos o1 @ 1.

ment, either an inductor or a capacitor, depending on whether the quan-
tity wL — 1 /wC is positive or negative. Suppose, for example, that wL >
1/wC. Then the combination is equivalent to an inductor L’ such that

ol = oL — L (8.37)
wC
Equivalence means only that the relation between current and voltage, for
steady oscillation at the particular frequency w, is the same. This allows
us to replace L and C by L’ in any circuit driven at this frequency. The
main point here is that the voltages across the inductor and capacitor are
both proportional to sin(wt + ¢), so they are always in phase with each
other (or rather, exactly out of phase).
This can be applied to the simple RLC circuit in Fig. 8.10. We need
only recall Egs. (8.21) and (8.25), the solution for the RL circuit driven
by the electromotive force &y cos wt, and replace wL by wL — 1/wC:

&o
1(t) = {1+ 8.38
() = e s con(@r +9) (8.38)
where
ang = 2k 8.39
e (8.39)

These expressions are also correct if 1/wC > wL, in which case we
equivalently have a capacitor C’ such that 1 /wC’ = 1/wC — L.

Of course, we could have just solved the RLC circuit from scratch.
The loop equation is

dl
LE — % + RI = &y cos wt. (8.40)

Instead of either Eq. (8.19) or Eq. (8.29), we now have all three types of
terms (involving L, C, and R) on the left-hand side. The coefficient of
the sin(wt + ¢) term is —Ily(wL — 1/wC), so we see that we can simply
use our results for the RL circuit, with wL replaced by oL — 1 /wC, as we
observed above.

8.2.5 Resonance

For fixed amplitude & of the electromotive force, and for given circuit
elements L, C, and R, Eq. (8.38) tells us that we get the greatest current
when the driving frequency w is such that

1
oL — — =0, (8.41)
wC

VW

R

Figure 8.10.
The RLC circuit driven by a sinusoidal
electromotive force.
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Figure 8.11.

An emf of 100 volts amplitude is applied to a
series RLC circuit. The circuit elements are the
same as in the example of the damped circuit in
Fig. 8.4. Circuit amplitude is calculated by

Eqg. (8.38) and plotted, as a function of w/wy, for
three different resistance values.

which is the same as saying that w =1/+/LC = wy, the resonant fre-
quency of the undamped LC circuit. In that case Eq. (8.38) reduces to

1) = W. (8.42)

That is exactly the current that would flow if the circuit contained the
resistor alone. The reason for this is that when w = 1/+/LC, the voltages
across the inductor and capacitor are always equal and opposite. Since
they cancel, they are effectively not present, and we simply have a circuit
consisting of a resistor and the applied emf & cos wt.

Example Consider the circuit of Fig. 8.4(a), connected now to a source or
generator of alternating emf, £ = &y cos wt. The driving frequency w may be
different from the resonant frequency wg = 1/ VLC, which, for the given capac-
itance (0.01 microfarads) and inductance (100 microhenrys), is 10° radians/s (or
10927 cycles per second). Figure 8.11 shows the amplitude of the oscillating
current as a function of the driving frequency w, for three different values of the
circuit resistance R. It is assumed that the amplitude &y of the emf is 100 volts
in each case. Note the resonance peak at w = wq, which is most prominent and
sharp for the lowest resistance value, R = 20 ohms. This is the same value of R
for which, running as a damped oscillator without any driving emf, the circuit
behaved as shown in the top graph of Fig. 8.4(b).

L =10"* henr;

cf‘\ ;D
4 ck/ %1\
||
I

R =20 ohms

€ =107 farad
@y = 1/VLC = 109 rad/s

N\
/ \sé/\_ R =200 ohms

—
§S

Current, in amperes, for & = 100 volts

0 0.5 1.0 L5 2.0 25 3.0
w/ay
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Note that we have encountered three (generally different) frequen-
cies up to this point:

e the frequency of the applied oscillating emf, which can take on any
value we choose;

e the resonant frequency, wy = 1/ «/LC, for which the amplitude of the
oscillating current is largest;

e the frequency (in the underdamped case) of the transient behavior,
given by Eq. (8.9). For light damping, this frequency is approximately
equal to the resonant frequency, wg = 1/+/LC.

8.2.6 Width of the /Iy(w) curve

The Q factor of the circuit in the above example with R = 20 ohms, given
in Eq. (8.13) as’ woL/R, is (106 . 10’4)/20, or 5, in this case. Generally
speaking, the higher the Q of a circuit, the narrower and higher the peak
of its response as a function of driving frequency w. To be more precise,
consider frequencies in the neighborhood of wq, writing v = wp + Aw.
Then, to first order in Aw/wy, the expression wL — 1/wC that occurs in
the denominator in Eq. (8.38) can be approximated this way:

1 Aw 1
wL— — =woL 1+ — ) — , (8.43)
oC wo woC(1 + Aw/wp)

and since wy is 1/+/LC, this becomes

L1422 ! ~ woL 222 (8.44)
@0 wo 1+ Aw/wg e wo )’ '

where we have used the approximation, 1/(1 + €) =~ 1 — €. Exactly at

resonance, the quantity inside the square root sign in Eq. (8.38) is just R?.

As w is shifted away from resonance, the quantity under the square root

will have doubled when |wL — 1/wC| = R, or when, approximately,
2[Aw| R 1

il il (8.45)

This means that the current amplitude will have fallen to 1/4/2 times
the peak when |Aw|/wg = 1/2Q. These are the “half-power” points,
because the energy or power is proportional to the amplitude squared,
as we shall explain in Section 8.6. One often expresses the width of
a resonance peak by giving the full width, 2Aw, between half-power
points. Evidently that is just 1/Q times the resonant frequency itself. Cir-
cuits with very much higher Q than this one are quite common. A radio
receiver may select a particular station and discriminate against others

3 The win Eq. (8.13) is the frequency of the freely decaying damped oscillator,
practically the same as w( for moderate or light damping. We use w( here in the
expression for Q. In the present discussion, w is any frequency we may choose to apply
to this circuit.
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by means of a resonant circuit with a Q of several hundred. It is quite
easy to make a microwave resonant circuit with a Q of 10%, or even 10°.

The angle ¢, which expresses the relative phase of the current and
emf oscillations, varies with frequency in the manner shown in Fig. 8.12.
At a very low frequency the capacitor is the dominant hindrance to cur-
rent flow, and ¢ is positive. At resonance, ¢ = 0. The higher the Q, the
more abruptly ¢ shifts from positive to negative angles as the frequency
is raised through wy.

To summarize what we know about Q, we have encountered two
different meanings:

e In an RLC circuit with an applied oscillating emf, 1/Q gives a meas-
ure of the width of the current and power curves, as functions of w.
The higher the Q, the narrower the curves. More precisely, the width
(at half maximum) of the power curve is wg/Q.

e If we remove the emf source, the current and energy will decay; O
gives a measure of how slow this decay is. The higher the O, the more
oscillations it takes for the amplitude to decrease by a given factor.
More precisely, the energy decreases by a factor 1/e after Q radians
(or Q/2m cycles). Equivalently, as Exercise 8.17 shows, the current
decreases by a factor of ¢ after Q cycles. (It’s hard to pass up a
chance to mention a result of e !)

8.3 Complex exponential solutions

In Section 8.2 we solved for the current in the series RLC circuit (includ-
ing a voltage source &) cos wt) in Fig. 8.10 by guessing a sinusoidal form
for the current /(7). In the present section we will solve for the current
in a different way, using complex numbers. This method is extremely
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powerful, and it forms the basis of what we will do in the remainder of
this chapter.

Our strategy will be the following. We will write down the Kirchhoff
loop equation as we did above, but instead of solving it directly, we will
solve a slightly modified equation in which the & cos wt voltage source
is replaced by £ye'®’. We will guess an exponential solution of the form
I(t) = I¢"" and solve for I, which will turn out to be a complex num-
ber.* Of course, our solution for /(r) cannot possibly be the current we
are looking for, because I (1) is complex, whereas an actual current must
be real. However, if we take the real part of (1), we will obtain (for rea-
sons we will explain) the desired current /(¢) that actually flows in the
circuit. Let’s see how all this works. Our goal is to reproduce the /(¢) in
Egs. (8.38) and (8.39).

The Kirchhoff loop equation for the series RLC circuit in
Fig. 8.10 is°

L? + RI(t) + @ = &y cos wt. (8.46)

If we take clockwise current to be p0s1t1ve, then Q(¢) is the integral of
1(1), thatis, Q(1) = f I(t) dr. Consider now the modified equation where
cos wt is replaced by e"‘”,

(8.47)
If I(r) is a (complex) solution to this equation, then if we take the real
part of the entire equation, we obtain (using the facts that differentiation
and integration with respect to  commute with taking the real part)

L%mmM+Rmmm+%fmmmw=&mwa (8.48)

We have used the remarkable mathematical identity, e = cosO+isiné,
which tells us that cos wt is the real part of ¢/*. (See Appendix K for a
review of complex numbers.)

Equation (8.48) is simply the statement that I(f) = Re[I~ (0] is a
solution to our original differential equation in Eq. (8.46). Our goal is
therefore to find a complex function [(#) that satisfies Eq. (8.47), and
then take the real part. Note the critical role that linearity played here.

4 The tilde on the I terms denotes a complex number. Note that I (?) has time
dependence, whereas I does not. More precisely, I = I(0). When writing /(¢), be
careful not to drop the 7 argument, because that will change the meaning to / (although
the meaning is generally clear from the context). There will actually be a total of four
different versions of the letter / that we will encounter in this method. They are
summarized in Fig. 8.13.

We are now taking Q to be the charge on the top plate of the capacitor (for no deep
reason). You should verify that if we instead took Q to be the charge on the bottom
plate, then two minus signs would end up canceling, and we would still arrive at

Eq. (8.48). After all, that equation for /(£) can’t depend on our arbitrary convention
for Q.
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Figure 8.13.
Relations among the various usages of the
letter “1.”

If our differential equation were modified to contain a term that wasn’t
linear in I(f), for example RI()?, then this method wouldn’t work,
because Re[l(r)?] is not equal to (Re[l~ (t)])2. The modified form of
Eq. (8.48) would not be the statement that /() = Re[l~ ()] satisfies the
modified form of Eq. (8.46).

A function of the form I(¢) = I will certainly yield a solution to
Eq. (8.47), because the e/’ factor will cancel through the whole equation,
yielding an equation with no time dependence. Now, if I(¢) = I¢'", then
O(7), which is the integral of 1), equals et /iw. (There is no need for a
constant of integration because we know that Q oscillates around zero.)
So Eq. (8.47) becomes

T iot

- o
Liwie® + Rie®™ + -

= Eye . (8.49)

Canceling the ¢/, solving for I, and getting the 7 out of the denominator
by multiplying by 1 in the form of the complex conjugate divided by
itself, yields

& &o[R — i(wL — 1/w0)]

= 8.50
ioL + R+ 1/ioC R? 4+ (wL — 1/wC)? (8-50)

=

The term in the square brackets is a complex number written in a + bi
form, but it will be advantagequs to write it in “polar” form, that is, as
a magnitude times a phase, Ae’?. The magnitude is A = +/a? + b2, and
the phase is ¢ = tan~!(b/a); see Problem 8.7. So we have
&o
R? + (wL — 1/wC)?
VR? + (oL — 1/wC)?

I = : \/R2 + (wL — 1/wC)? '®

¢ = Iye?, (8.51)

where

& 1 L
0 and tan¢ = —— — w—. (8.52)

VR + (oL — 1/wC)? RoC R

The actual current /(7) is obtained by taking the real part of the full
I(t) = Ie'! solution:

Iy

I(t) = Re[fei‘”’] = Re[loei¢eiw’] = Iy cos(wt + @)

VR? + (oL — 1/wC)?

in agreement with Eqgs. (8.38) and (8.39). I is the amplitude of the cur-
rent, and ¢ is the phase relative to the applied voltage.

As mentioned above, there are four different types of I’s that appear

in this procedure: I (0, f, 1(1), and Ij. These are related to each other in
the following ways (summarized in Fig. 8.13).

cos(wt + ¢), (8.53)
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e The two complex quantities, I (t) and I , are related by a simple factor
of ¢': [(r) = I¢'"; I equals 1(0).

I(1), which is the actual current, equals the real part of I(t): I(t) =
Re[I(1)].

Iy is the magnitude of both I(r) and I: Iy = |[(¢)| and Iy = |1].

Iy is the amplitude of 1(¢): I(t) = Iy cos(wt + ).

Although the above method involving complex exponentials might
take some getting used to, it is much cleaner and quicker than the method
involving trig functions that we used in Section 8.2. Recall the system
of equations that we needed to solve in Eqs. (8.21)—(8.25). We had to
demand that the coefficients of sinwt? and coswt in Eq. (8.20) were
independently zero. That involved a fair bit of algebra. In the present
complex-exponential method, the ¢/’ terms cancel in Eq. (8.49), so we
are left with only one equation, which we can quickly solve. The point
here is that the derivative of an exponential gives back an exponential,
whereas sines and cosines flip flop under differentiation. Of course, from
the relation ¢ = cos 6 + i sin @, we know that exponentials can be writ-
ten in terms of trig functions, and vice versa via cos 0 = (¢ 4 ¢70)/2
and sinf = (¢’ — ¢=¥)/2i. So any task that can be accomplished with
exponential functions can also be accomplished with trig functions. But
exponentials invariably make the calculations much easier.

In the event that the applied voltage isn’t a nice sinusoidal function,
our method of guessing exponentials (or trig functions) is still applica-
ble, due to two critical things: (1) Fourier analysis and (2) the linearity of
the differential equation in Eq. (8.46). You will study the all-important
subject of Fourier analysis in your future math and physics courses, but
for now we simply note that Fourier analysis tells us that any reason-
ably well-behaved function for the voltage source can be written as the
(perhaps infinite) sum of exponentials, or equivalently trig functions.
And then linearity tells us that we can just add up the solutions for all
these exponential voltage sources to obtain the solution for the origi-
nal voltage source. In effect, this is what we did when we took the real
part of (1) to obtain the actual current /(r). We would have arrived at
the same answer if we wrote the applied voltage £ cos wt as (e’ +
e~ /2, then found the solutions for these two exponential voltages,
and then added them together. So the strategy of taking the real part is
just a special case of the strategy of superposing solutions via Fourier
analysis.

8.4 Alternating-current networks

In this section we will generalize the results from Section 8.3, where
our circuit involved only one loop. Complex numbers provide us with
a remarkably efficient way of dealing with arbitrary alternating-current
networks. An alternating-current network is any collection of resistors,
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Figure 8.14.
An alternating-current network.

capacitors, and inductors in which currents flow that are oscillating
steadily at the constant frequency w. One or more electromotive forces, at
this frequency, drive the oscillation. Figure 8.14 is a diagram of one such
network. The source of alternating electromotive force is represented by
the symbol -@ In a branch of the network, for instance the branch that
contains the inductor L, the current as a function of time is

I (1) = Iy cos(wt + ¢o). (8.54)

Since the frequency is a constant for the whole network, two numbers,
such as the amplitude /y; and the phase constant ¢, above, are enough
to determine for all time the current in a particular branch. Similarly, the
voltage across a branch oscillates with a certain amplitude and phase:

Vo (1) = Vo cos(wt + 6). (8.55)

If we have determined the currents and voltages in all branches of
a network, we have analyzed it completely. To find them by construct-
ing and solving all the appropriate differential equations is possible, of
course; and if we were concerned with the transient behavior of the net-
work, we might have to do something like that. For the steady state at
some given frequency w, we can use a far simpler and more elegant
method. It is based on two ideas:

(1) An alternating current or voltage can be represented by a complex
number;

(2) Any one branch or element of the circuit can be characterized, at a
given frequency, by the relation between the voltage and current in
that branch.

As we saw above, the first idea exploits the identity, e = cosf +
isinf. To carry it out we adopt the following rule for the representation:

An alternating current /(¢) = Ip cos(wt + ¢) is to be represented
by the complex number Ioe™, that is, the number whose real part is
Ip cos ¢ and whose imaginary part is Iy sin ¢.

Going the other way, if the complex number x + iy represents a
current /(¢), then the current as a function of time is given by the
real part of the product (x + iy)e™’. Equivalently, if Ipe’® repre-
sents a current /(¢), then I(¢) is given by the real part of the product
Ipe'?ei®! | which is Iy cos(wt + ¢).

Figure 8.15 is a reminder of this two-way correspondence. Since a
complex number z = x + iy can be graphically represented on the two-
dimensional plane, it is easy to visualize the phase constant as the angle
tan~! (y/x) and the amplitude Iy as the modulus /x2 4 y2.
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}7
CURRENT AS A ‘o COMPLEX NUMBER
FUNCTION OF TIME REPRESENTATION
¢
x
— T i
I cos(t + ¢) Iyeld=x+iy

it

Multiply by e
and take real part

What makes all this useful is the following fact. The representation
of the sum of two currents is the sum of their representations. Consider
the sum of two currents /1 (f) and />(¢) that meet at a junction of wires in
Fig. 8.14. At any instant of time #, the sum of the currents is given by

11 (1) + Ix(1) = oy cos(wt + ¢1) + Loz cos(wt + ¢2)
= (lo1 cos ¢1 + Ip2 cos ¢y) cos wt
— (lo1 sin ¢y + I sin ¢) sin wt. (8.56)

On the other hand, the sum of the complex numbers that, according to
our rule, represent /() and I»(?) is

Ioi e + 1026i¢2 = (lo; cos @1 + Ipp cos @) + i(loy sin ¢y + Iop sin o).
(8.57)

If you multiply the right-hand side of Eq. (8.57) by cos wt + i sin wt and
take the real part of the result, you will get just what appears on the right
in Eq. (8.56). This is no surprise, of course, because what we’ve just done
is show (the long way) that

Re[IOIei(wt+¢l) + Iozei(wt+¢2)] — Re[(101€i¢1 4 1026i¢2)(eiwt)].
(8.58)

The left-hand side of this equation is what appears in Eq. (8.56), and the
right-hand side is the result of multiplying Eq. (8.57) by €' = cos wt +
i sin wt and taking the real part.

Figure 8.16 shows geometrically what is going on. The real part of
a number in the complex plane is its projection onto the x axis. So the
current /1 () = Io; cos(wt + ¢1) is the horizontal projection of the com-
plex number To1€" @01 and this complex number can be visualized as
the vector Io ¢! rotating around in the plane with angular frequency
(because the angle increases according to wt). Likewise for the current
I (1) = Ip cos(wt+¢7). Now, the sum of the projections of two vectors is

Figure 8.15.
Rules for representing an alternating current by
a complex number.

Parallelogram
rotates at @

V\w
Ip1€91 + I e

Figure 8.16.

As these three vectors rotate around in the
plane with the same frequency w, the horizontal
projection of the long vector (the sum) always
equals the sum of the horizontal projections of
the other two vectors.
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the projection of the sum. So we can alternatively obtain the total current
I1(¢) + I>(¢) by finding the projection of the sum of the representations,
which is the complex number I €91 + [pe'?2, as this sum rotates around
in the plane with frequency w. We see that the validity of the statement,
“The representation of the sum of two currents is the sum of their repre-
sentations,” boils down to the geometrical fact that the parallelogram in
Fig. 8.16 keeps the same shape as it rotates around in the plane.

This means that, instead of adding or subtracting the periodic func-
tions of time themselves, we can add or subtract the complex numbers
that represent them. Or, putting it another way, the algebra of alternat-
ing currents turns out to be the same as the algebra of complex num-
bers with respect to addition. The correspondence does not extend to
multiplication. The complex number To1 o172 does not represent
the product of the two current functions in Eq. (8.56), because the real
part of the product of two complex numbers is not equal to the product
of the real parts (the latter omits the contribution from the product of the
imaginary parts).

However, it is only addition of currents and voltages that we need to
carry out in analyzing the network. For example, at the junction where
11 () meets I(¢) in Fig. 8.14, there is the physical requirement that at
every instant the net flow of current into the junction shall be zero. Hence
the condition

L)+ L)+ 131 =0 (8.59)

must hold, where I1(¢), I>(t), and I5(¢) are the actual periodic functions
of time. Thanks to our correspondence, this can be expressed in the sim-
ple algebraic statement that the sum of three complex numbers is zero.
Voltages can be handled in the same way. Instantaneously, the sum of
voltage drops around any loop in the network must equal the electro-
motive force in the loop at that instant. This condition relating periodic
voltage functions can likewise be replaced by a statement about the sum
of some complex numbers, the representations of the various oscillating
functions, V(t), V> (?), etc.

8.5 Admittance and impedance

The relation between current flow in a circuit element and the voltage
across the element can be expressed as a relation between the complex
numbers that represent the voltage and the current. Look at the inductor—
resistor combination in Fig. 8.5. The voltage oscillation is represented
by® V = & and the current by I = Ipe'®, where Iy = £y/vR* + w?L?
and tan¢p = —wL/R. The phase difference ¢ and the ratio of current

6 As in Section 8.3, we will indicate complex voltages (and currents) by putting a tilde
over them, to avoid confusion with the actual voltages (or currents) V(f) which, as we
have noted, are given by the real part of Ve'®'.
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amplitude to voltage amplitude are properties of the circuit at this fre-
quency. We define a complex number Y as follows:

Y e’ ith ¢ = tan™! ok
=—, Wi = tan -——).
/R2+w2L2 R

Then the relation

(8.60)

[=YV (8.61)

holds, where V is the complex number (which happens to be just the
real number & in the present case) that represents the voltage across the
series combination of R and L, and I is the complex number that rep-
resents the current. Y is called the admittance. The same relation can
be expressed with the reciprocal of Y, denoted by’ Z and called the
impedance:

(8.62)

~ 1\ ~ ~ -
V:(I_/>I - V=ZI

In Egs. (8.61) and (8.62) we do make use of the product of two
complex numbers, but only one of the numbers is the representation of an
alternating current or voltage. The other is the impedance or admittance.
Our algebra thus contains two categories of complex numbers, those that
represent admittances and impedances, and those that represent currents
and voltages. The product of two “impedance numbers,” like the product
of two “current numbers,” doesn’t represent anything.

The impedance is measured in ohms. Indeed, if the circuit element
had consisted of the resistance R alone, the impedance would be real and
equal simply to R, so that Eq. (8.62) would resemble Ohm’s law for a
direct-current circuit: V = RI.

The admittance of a resistanceless inductor is the imaginary quantity
Y = —i/wL. This can be seen by letting R go to zero in Eq. (8.60), which
yields ¢ = —m/2 = ¢ = —i. The factor —i means that the current
oscillation lags the voltage oscillation by /2 in phase. On the complex
number diagram, if the voltage is represented by V (Fi g. 8.17(b)), the cur-
rent might be represented by I, located as shown there. For the capacitor,
we have Y = iwC, as can be seen from the expression for the current in
Eq. (8.30). In this case V and [ are related as indicated in Fig. 8.17(c); the
current leads the voltage by 77/2. The inset in each of the figures shows
how the relative sign of V and [ is to be specified. Unless that is done
consistently, leading and lagging are meaningless. Note that we always
define the positive current direction so that a positive voltage applied to a

7 We won’t put a tilde over Y or Z, even though they are complex numbers, because we
will rarely have the need to take their real parts (except when finding the phase ¢). So
we won’t need to worry about confusion between two different types of impedances.

(a) Imag. —+

Real

(b) +

(© +

~
<
[
I
-
~

Flgure 8.17.

V and I are complex numbers that represent the
voltage across a circuit element and the current
through it. The relative phase of current and
voltage oscillation is manifest here in the angle
between the “vectors.” (a) In the resistor, current
and voltage are in phase. (b) In the inductor,
current lags the voltage. (c) In the capacitor,
current leads the voltage.
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Figure 8.18.
Combining admittances in parallel.

Z=7,+2,

Figure 8.19.
Combining impedances in series.

Y=Y +Y, (L

~

~

Table 8.1.
Complex impedances
Symbol Admittance, Y Impedance, Z = 1/Y
1
R VW - R
R
1
L — iwL
ioL
1
C iwC
-I |_ " iwC
1=YV V=127

resistor causes positive current (Fig. 8.17(a)). The properties of the three
basic circuit elements are summarized in Table 8.1.

We can build up any circuit from these elements. When elements
or combinations of elements are connected in parallel, it is convenient
to use the admittance, for in that case admittances add. In Fig. 8.18 two
black boxes with admittances Y; and Y> are connected in parallel. Since
the voltages across each box are the same and since the currents add,
we have

I=0L+L=YV+YhV=>+1)V, (8.63)
which implies that the equivalent single black box has an admittance
Y = Y; 4 Y. From Fig. 8.19 we see that the impedances add for ele-
ments connected in series, because the currents are the same and the
voltages add:

V=Vi+Vo=2Z1I+ 21 = (Z + D), (8.64)

which implies that the equivalent single black box has an impedance
Z = 71 + Z;. It sounds as if we are talking about a direct-current net-
work! In fact, we have now reduced the ac network problem to the dc
network problem, with only this difference: the numbers we deal with
are complex numbers.

Example (Parallel RLC circuit) Consider the “parallel RLC” circuit in
Fig. 8.20. The combined admittance of the three parallel branches is

1 i
Y=—+ivC— —. 8.65
R L (8.65)
The voltage is simply &, so the complex current is
- - 1 1
I=YV=|=-+4iloC—-—]|&. 8.66

The amplitude /o of the current oscillation /(7) is the modulus of the complex
number /, and the phase angle relative to the voltage is tan~! [Im(Y)/Re(Y)].
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Assuming that the voltage is given as usual by &y cos wr (that is, with no phase),
we have

I(r) = 5()\/(1/R)2 + (wC — 1/wL)? cos(wt + ),

R
tan¢ = RwC — —. (8.67)
wlL

You can compare these results with the results in Eqgs. (8.38) and (8.39) for the
series RLC circuit. For both of these circuits, you are encouraged to check limit-
ing cases for the R, L, and C values.

Let’s now analyze a more complicated circuit. We will examine in
detail what the various complex voltages and currents look like in the
complex plane and how they relate to each other.

Example Consider the circuit in Fig. 8.21. Our goal will be to find the complex
voltage across, and current through, each of the three elements. We will then
draw the associated vectors in the complex plane and verify that the relations
among them are correct. To keep the calculations from getting out of hand, we
will arrange for all three of the complex impedances to have magnitude R. If we
take R and w as given, this can be arranged by letting L = R/w and C = 1/wR.
The three impedances are then

Zr =R, Z; =iwL=iR, Z¢=1/ioC = —iR. (8.68)

With these values, the impedance of the entire circuit is

Z=zpep R _pf i L) gl (8.69)
Tt ez, S\ ) T :

Assuming that the applied voltage is given as usual by &y cos wt (with no extra
phase), the applied complex voltage ‘75 is simply the real number &y. The total
complex current I (which is also the complex current Ic through the capacitor)
is therefore given by

- ~ - & & 2 & .
=17 Il=—=——-=—/(1 . 8.70
Ve i Z = RI1I= R( +1i) (8.70)

The complex voltage across the capacitor is then
- & . , .
Ve=I1cZc = ;(1 +1i) - (—iR) = & —i). (8.71)

The complex voltages across the resistor and inductor are the same, and their
common value equals &y minus the complex voltage across the capacitor:

VR=V.=E — Ve =& — &l —i) = i&. (8.72)

&y cos mt @ R L

a

Figure 8.20.

A parallel resonant circuit. Add the complex
admittances of the three elements, as in
Eq. (8.65).

& cos ot @

Figure 8.21.
What are the complex voltages and currents
across each of the three elements in this circuit?
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Figure 8.22.

The various complex voltages and currents for

the circuit in Fig. 8.21.

The complex current through the resistor is therefore

- Vg i€
ir=-R="0 (8.73)
Zr R
and the complex current through the inductor is

I = YR _ ’5—0 = @. (8.74)
Zr iR R

Our results for the three complex voltages (along with the &y source) and the
three complex currents are drawn in the complex plane in Fig. 8.22. (The V’s
and I’s have different units, so the relative size of the two groups of vectors is
meaningless.) There are various true statements we can make about the vectors:
(1) & equals the sum of VC and either VL or Vg, ) I¢ equals the sum of I, R
and 1, L, (3) I 1 is 90° behind ‘7L as the vectors rotate counterclockwise around in
the plane, (4) I is in phase with Vg, and (5) I is 90° ahead of V.

As time goes on, the vectors in Fig. 8.22 all rotate around in the com-
plex plane with the same angular speed w. The vectors keep the same
rigid shape with respect to each other. The horizontal projections (the
real parts) are the actual quantities that exist in the real world. Equiva-
lently, the actual quantities are given by Iz(f) = Re[Ige'®'], etc. The e/’
factor increases the phase by wt, so this is what causes the vectors to
rotate around in the plane. Figure 8.22 gives the vectors at t = 0 (assum-
ing the applied voltage equals &y cos wt with no extra phase), or at any
time for which wt is a multiple of 2.

As mentioned in Section 8.4, the critical thing to realize about this
rotation around in the plane is that since, for example, the vector fc
always equals the sum of vectors I and I (because the system rotates
as a rigid “object”), the horizontal projections also always satisfy this
relation. That is, Ic(t) = Ir(t) + Ir(¢). In other words, the Kirchhoff
node condition is satisfied at the node below the capacitor. Likewise,
since the applied voltage Vg always equals V¢ plus Vg (or V7), we have
Ve(t) = Ve(f) + Vg(#). So the Kirchhoff loop condition is satisfied. In
short, if the complex voltages and currents satisfy Kirchhoff’s rules at a
particular time, then the actual voltages and currents satisfy Kirchhoff’s
rules at all times.

As noted earlier in this section, the i’s in Z; and Z¢ in Table 8.1
are consistent with the £77/2 phases between the voltages and currents.
Let’s verify this for Fig. 8.22. In the case of the inductor, we have

V=017 = Vy=I(iwl) = Vi =I.(""?wL), (8.75)

which means that V; is /2 ahead of I;. The opposite is true for the
capacitor. More generally, we can write V = [Z for the entire circuit
or any subpart, just as we can for a network containing only resistors.
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If the complex voltage V, complex current 7, and impedance Z are written
in polar form as®

V=V, [=ILe", Z=,|z|%, (8.76)

then, by looking at the modulus and phase of the two sides of the V=1Iz
equation, we obtain

Vo = IplZ] and Qv = ¢y + ¢z (8.77)

The former of these statements looks just like Ohm’s law, V = IR. The
latter says that the voltage is ¢z ahead of the current. You are encouraged
at this point to solve Problem 8.9, the task of which is to draw all the
complex voltages and currents for the series and parallel RLC circuits in
Figs. 8.10 and 8.20.

We should emphasize that the above methods are valid only for /in-
ear circuit elements, elements in which the current is proportional to the
voltage. In other words, our circuit must be described by a linear dif-
ferential equation. You can’t even define an impedance for a nonlinear
element. Nonlinear circuit elements are very important and interesting
devices. If you have studied some in the laboratory, you can see why
they will not yield to this kind of analysis.

This is all predicated, too, on continuous oscillation at constant fre-
quency. The transient behavior of the circuit is a different problem. How-
ever, for linear circuits the tools we have just developed have some utility,
even for transients. The reason, as we noted at the end of Section 8.3, is
that by superposing steady oscillations of many frequencies we can rep-
resent a nonsteady behavior, and the response to each of the individual
frequencies can be calculated as if that frequency were present alone.

We have encountered three different methods for dealing with steady
states in circuits containing a sinusoidal voltage source. Let’s summarize
them.

Method 1 (Trig functions)
This is the method we used in Section 8.2. The steps are as follows.

e Write down the differential equation expressing the fact that the volt-
age drop around each loop in a circuit is zero. The various voltage
drops take the form of IR, Ldl/dt, and Q/C. Write the differential
equation in terms of only one quantity, say the current /(¢).

e Guess a trig solution of the form /(¢) = Iy cos(wt + ¢). There will be
many such currents if there are many loops.

‘We have written the modulus of Z as |Z| rather than Z to signify that Z isn’t the same
type of quantity as V and I. The quantities V( and Iy are the amplitudes of the actual
voltage and current oscillations, and we don’t want to give the impression that Z
represents an oscillatory function.
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Use the trig sum formulas to expand cos(w? + ¢) and sin(wt + ¢), and
then demand that the coefficients of cos wt and sin wt are separately
identically equal to zero. This yields solutions for Iy and ¢.

Method 2 (Exponential functions)
This is the method we used in Section 8.3. The steps are as follows.

As in Method 1, write down the differential equation for the voltage
drop around each loop, and then write it in terms of only, say, the
current (¢).

Replace the & cos wr voltage source with Eye'’, and then guess a
complex solution for the current of the form [(t) = I, The actual
current in the circuit will be given by the real part of this. That is,
I(f) = Re[I(¢)]. There will be many such currents if there are many
loops.

The solution for I can be written in the general polar form, I = Ipe®,
The actual current is then

iwt

1(t) = Re[I(1)] = Re[le™"] = Re[lpe'® '] = Iy cos(wt + ¢).
(8.78)

Iy is the amplitude of the current, and ¢ is the phase relative to the
voltage source.

Method 3 (Complex impedances)
This is the method we used in Sections 8.4 and 8.5. The steps are as
follows.

Assign impedances of R, iwL, and 1/iwC to the resistors, inductors,
and capacitors in the circuit, and then use the standard rules for adding
impedances in series and in parallel (the same rules as for simple resis-
tors).

Write down V = IZ for the entire circuit or any subpart, just as you
would for a network containing only resistors. With the complex quan-
tities written in polar form, V = IZ quickly yields Vo = Io|Z| and
¢v = ¢1 + ¢z. The former of these statements looks just like Ohm’s
law, V = IR. The latter says that the voltage is ¢z ahead of the current.
The V and / vectors rotate around in the complex plane with the same
angular speed w. The horizontal projections (the real parts) are the
actual quantities that exist in the real world. Since the vectors keep the
same rigid shape with respect to each other, it follows that if the com-
plex voltages and currents satisfy Kirchhoff’s rules at a given time, the
actual voltages and currents satisfy Kirchhoff’s rules at all times.
This third method is actually just a more systematic version of the
second method. But for circuits involving more than one loop, the third
method is vastly more tractable than the second, which in turn is much
more tractable than the first.
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8.6 Power and energy in alternating-current

circuits
If the voltage across a resistor R is Vpcoswt, the current is
I = (Vo/R) cos wt. The instantaneous power, that is, the instantaneous
rate at which energy is being dissipated in the resistor, is given by

V2
Pr = RI? = ?0 cos? wt. (8.79)

Since the average of cos” wt over many cycles is 1/2 (because it has the
same average as sin> wt, and sin® wf + cos® wt = 1), the average power
dissipated in the resistor is

Pr = ! Vg (8.80)

=2 r" ‘
It is customary to express voltage and current in ac circuits by giving
not the amplitude but 1/+/2 times the amplitude. This is often called the
root-mean-square (rms) value: Vipg = Vo/ /2. That takes care of the
factor 1/2 in Eq. (8.80), so that

_ V2
Pr == 8.81
R R (8.81)

For example, the common domestic line voltage in North America is
120 volts, which corresponds to an amplitude 1204/2 = 170 volts. The
potential difference between the terminals of the electric outlet in your
room (if the voltage is up to normal) is

V() = 170 cos(377s™ " - 1), (8.82)

where we have used the fact that the frequency is 60 Hz. An ac ammeter
is calibrated to read 1 amp when the current amplitude is 1.414 amps.

Equation (8.81) holds in the case of a single resistor. More generally,
the instantaneous rate at which energy is delivered to a circuit element (or
a combination of circuit elements) is VI, the product of the total instan-
taneous voltage across the element(s) and the current, with due regard to
sign. Consider this aspect of the current flow in the simple LR circuit in
Fig. 8.5. In Fig. 8.23 we have redrawn the current and voltage graphs and
added a curve proportional to the product VI. Positive VI means energy
is being transferred into the LR combination from the source of electro-
motive force, or generator. Note that VI is negative in certain parts of the
cycle. In those periods some energy is being returned to the generator.
This is explained by the oscillation in the energy stored in the magnetic
field of the inductor. This stored energy, LI* /2, goes through a maximum
twice in each full cycle.
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Average
power
Figure 8.23.

The instantaneous power VI is the rate at which
energy is being transferred from the source of
electromotive force on the left to the circuit
elements on the right. The time average of this
is indicated by the horizontal dashed line.

The average power P delivered to the LR circuit corresponds to the
horizontal dashed line. To calculate its value, let’s take a look at the prod-
uct VI, with V = &y cos wt and I = Iy cos(wt + ¢):

VI = Eyly cos wt cos(wt + @)
= &l (cos2 w1 COS ¢ — COs wt sin wt sin ¢). (8.83)

The term proportional to cos wf sin wt has a time average zero, as is obvi-
ous if you write it as (1/2) sin 2wz, while the average of cos? wt is 1/2.
Thus for the time average we have

— 1
P=VI= 55010 cos ¢. (8.84)

If both current and voltage are expressed as rms values, in volts and
amps, respectively, then

P= VimsIrms COS ¢ (8.85)

In this circuit all the energy dissipated goes into the resistance R. Natu-
rally, any real inductor has some resistance. For the purpose of analyzing
the circuit, we included that with the resistance R. Of course, the heat
evolves at the actual site of the resistance.

The power P equals the product of the actual voltage V(7) and actual
current /(¢). These quantities in turn are the real parts of the complex
voltage V(t) and complex current [(1). Does this mean that the power
equals the real part of the product f/(t)f ()? Definitely not, because the
product of the real parts doesn’t equal the real part of the product;
the real part of the product also has a contribution from the product of
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the imaginary parts of \7(1‘) and I (). As we mentioned in Section 8.4, it
doesn’t make any sense to form the product of two complex quantities
(excluding products with impedances and admittances, which are a dif-
ferent type of number; they aren’t functions of time that we solve for).
The point is that, since our original differential equations were linear in
voltages and currents, we must keep things that way. The product of two
of these quantities doesn’t have anything to do with the actual solution to
the differential equation.

There was nothing special about our LR circuit, so Eq. (8.85) holds
for a general circuit (or subpart of a circuit), provided that Vi is the
total rms voltage across the circuit, I.;,g is the rms current through the
circuit, and ¢ is the phase between the instantaneous current and voltage.
Equation (8.85) reduces to Eq. (8.81) in the special case where the circuit
consists of a single resistor. In that case, the current across the resistor
is in phase with the voltage, so ¢ = 0. Additionally, Iy = Vims/R, s0O
Eq. (8.85) simplifies to Eq. (8.81). In the case where a resistor is part of a
larger circuit, remember that the Vi in Eq. (8.85) is the voltage across
the entire circuit (or whatever part we’re concerned with), while the Viyg
in Eq. (8.81) is the voltage across only the resistor; see Problem 8.14.

Example To get some more practice with the methods we developed in Sec-
tion 8.5, we’ll analyze the circuit in Fig. 8.24(a). A 10,000 ohm, 1 watt resistor
(this rating gives the maximum power the resistor can safely absorb) has been
connected up with two capacitors of capacitance 0.2 and 0.5 microfarads. We
propose to plug this into the 120 volt, 60 Hz outlet. Question: Will the 1 watt
resistor get too hot? In the course of finding out whether the average power dis-
sipated in R exceeds the 1 watt rating, we’ll calculate some of the currents and
voltages we might expect to measure in this circuit. One way to work through the
circuit is outlined below.

Admittance of Cy = iwCy = i(377)(2-10~7) = 0.754 - 10~%i ohm ™!

1
Admittance of the resistor = ? =10~%* ohm™!

Admittance of = 10"%(1 + 0.754i) ohm™!

B 1 _10%(1 — 0.754i)
C 107414 0.754) 12407542
= (6380 — 4810i) ohms

Impedance of

Impedance of C| = —% = —(377)(51710_7) = —5300i ohms
w .

Impedance of entire circuit = (6380 — 10,110i) ohms
B 120 _ 120(6380 + 10,110i)
~ 6380 — 10,1100 (6380)2 + (10,110)2

I = (5.36 + 8.49i) - 1073 amp

(b)

C2 J— VZ

'3

Figure 8.24.

An actual network (a) ready to be connected to
a source of electromotive force, and (b) the
circuit diagram.
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Since 120 volts is the rms voltage, we obtain the rms current. That is, the mod-
ulus of the complex number /;, which is [(5.36)2 + (8.49)2]]/2 1073 amp
or 10.0 milliamps, is the rms current. An ac milliammeter inserted in series
with the line would read 10 milliamps. This current has a phase angle ¢ =
tan71(0.849/0.536) or 1.01 radians with respect to the line voltage. From
Eq. (8.85), the average power delivered to the entire circuit is then

P = (120 volts)(0.010 amp) cos 1.01 = 0.64 watt. (8.86)

In this circuit the resistor is the only dissipative element, so this must be the
average power dissipated in it. Just as a check, we can find the voltage V> across
the resistor. If V| is the voltage across C1, we have

Vi=1 (ié) = (5.36 + 8.49i)(—5300i) 103 = (45.0 — 28.4i) volts;

Vo =120 — V| = (75.0 4- 28.4i) volts. (8.87)

The current /5 in R will be in phase with V;, of course, so the average power in
R will be
V3 (75.0)% + (28.4)

= N = T = 0.64 watt, (8.88)

which checks. Thus the rating of the resistor isn’t exceeded, for what that assur-
ance is worth. Actually, whether the resistor will get too hot depends not only
on the average power dissipated in it, but also on how easily it can get rid of the
heat. The power rating of a resistor is only a rough guide.

~l

8.7 Applications

The resonance of electrical circuits has numerous applications in the
modern world. Our lives wouldn’t be the same without it. Any wire-
less communication, from radios to cell phones to computers to GPS
systems, is made possible by resonance. If you have a radio sitting on
your desk, it is being bombarded by electromagnetic waves (discussed in
Chapter 9) with all sorts of frequencies. If you want to pick out a partic-
ular frequency emitted by a radio station, you can “tune” your radio to
that frequency by adjusting the radio’s resonant frequency. This is nor-
mally done by adjusting the capacitance of the internal circuit by using
varactors — diodes whose capacitance can be controlled by an applied
voltage. Assuming that the resistance of the circuit is small, two things
will happen when the resonant frequency matches the frequency of the
radio station: there will be a large oscillation in the circuit at the radio
station’s frequency, and there will also be a negligible oscillation at all
the other frequencies that are bombarding the radio. A high Q value of
the circuit leads to both of these effects, due to the facts that the height of
the peak in Fig. 8.11 is proportional to Q (as you can show) and that the
width is proportional to 1/Q. The oscillation in the circuit can then be
demodulated (see the AM/FM discussion in Section 9.8) and amplified
and sent to the speakers, creating the sound that you hear. Resonance
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provides us with an astonishingly simple and automatic mechanism for
finding needles in haystacks.

The microwaves in a microwave oven are created by a magnetron.
This device consists of a ring-like chamber with a number (often eight)
of cavities around the perimeter (Fig. 8.25). These cavities have both
a capacitance and an inductance (and also a small resistance), so they
act like little resonant LC circuits. Their size is chosen so that the reso-
nant frequency is about 2.5 GHz. The charge on the tips of the little LC
cavities alternates in sign around the perimeter of the ring. Charge (and
hence energy) is added to the system by emitting electrons from the cen-
ter of the ring. These electrons are attracted toward the positive tips. If
this were the whole story, the effect would be to reduce the charge in the
system. But there is a clever way of reversing the effect: by applying an
appropriate magnetic field, the paths of the electrons can be bent by just
the right amount to make them hit the negative tips. Charge is therefore
added to the system instead of subtracted. The microwave radiation can
be extracted by, say, inducing a current in small coils contained in the
LC cavities.

The electricity that comes out of your wall socket is alternating cur-
rent (ac) as opposed to direct current (dc). The rms voltage in North
America is 120 V, and the frequency is 60 Hz. (In Europe the values
are 230 V and 50 Hz, respectively.) The fundamental reason we use ac
instead of dc is that, in the case of ac, it is easy to increase or decrease the
voltage via a transformer. This is critical for the purpose of transmitting
power over long distances, because for a given power P = IV supplied by
a power plant, a large V implies a small /, which in turn implies a small
I?R power loss in the long transmission lines. It is much more difficult to
change the voltage in the case of dc. This was the deciding factor during
the “War of Currents” in the 1880s, when ac and dc power were battling
for dominance. Because dc power had to be shipped at the same low volt-
age at which it was used, dc power plants needed to be located within a
few miles of the load. This had obvious disadvantages: cities would need
to contain many power plants, and conversely a dam located far from a
populated area would be useless. However, modern developments have
made the conversion of dc voltages easier, so high-voltage, direct current
(HVDC) power transmission is used in some instances. For both ac and
dc, the long-haul voltages are on the order of a few hundred kilovolts.
The War of Currents pitted (among many other people) Thomas Edison
on the dc side against Nikola Tesla on the ac side.

Most of the electricity produced in power plants is three-phase. That
is, there are three separate wires carrying voltages that are 120° out
of phase. This can be achieved, for example, by having three loops of
wire in Fig. 7.13 instead of just the one shown. There are various advan-
tages to three-phase power, one of which is that it delivers a more steady
power compared with single-phase, which has two moments during each
cycle when the voltage is zero. However, this is mainly relevant for large

Figure 8.25.
A magnetron. The cavities have both a
capacitance and an inductance.
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machinery. Most households are connected to only one of the phases (or
between two of them) in the power grid.

The ac power delivered to your home works fine for many electrical
devices. For example, a toaster and an incandescent light bulb require
only the generation of IR power, which is created by either ac or dc.
But many other devices require dc, because the direction of the current
in the electronic circuits matters. A power adapter converts ac to dc,
while generally also lowering the voltage. The voltage is lowered by a
transformer, and then the conversion to dc is accomplished by a bridge
rectifier, which consists of a combination of four diodes that lets the
current flow in only one direction. Additionally, a capacitor helps smooth
out the dc voltage by storing charge and then releasing it when the voltage
would otherwise dip.

As mentioned in Section 3.9, it is advantageous to perform power-
factor correction in the ac electrical power grid. The larger the imaginary
part of an impedance of, say, an electrical motor, the larger the phase
angle ¢, and hence the smaller the cos ¢ factor in Eq. (8.85), which is
known as the power factor. At first glance, this doesn’t seem to present
a problem, because the unused power simply sloshes back and forth
between the power station and the motor. However, for a given amount
of net power consumed, a smaller power factor means that the current /
will need to be larger. This in turn means that there will be larger /2R
power losses in the (generally long) transmission lines. For this reason,
industries are usually charged a higher rate if their power factor is below
0.95. In an inductive circuit (for example, a motor with its many wind-
ings), the power factor can be increased by adding capacitance to the
circuit, because this will reduce the magnitude of the imaginary part of
the impedance.

CHAPTER SUMMARY

e The loop equation for a series RLC circuit (with no emf source) yields
a linear differential equation involving three terms, one for each ele-
ment. In the underdamped case, the solution for the voltage across the
capacitor is

V(t) = e * (A cos wt + Bsin wt), (8.89)
where
A S (8.90)
= — an =— - —. .
“=3r T Lcar
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The solutions for the overdamped and critically damped cases take
other forms. The quality factor of a circuit is given by

energy stored

O=w- (8.91)

average power dissipated

e If we add to the series RLC circuit a sinusoidal emf source, £(f) =
&p cos wt, then the solution for the current is I(f) = Iycos(wt + ¢),
where

1 L
& and tang = —— — 2=, (8.92)

Iy =

' /Rt (L — 1jaC)? RoC R
This is the steady-state solution that survives after the transient solu-
tion from Section 8.1 has decayed away. I is maximum when w equals
the resonant frequency, wy = 1/ /LC. The width of the Iy(w) curve
around the resonance peak is on the order of wy/Q.

e The series RLC circuit can also be solved by replacing the & cos wt
term in the Kirchhoff differential equation with £ye’®’, and then guess-
ing an exponential solution of the form I(r) = Ie'". The actual current
1(1) is obtained by taking the real part of 1(1).

e In alternating-current networks, currents and voltages can be repre-
sented by complex numbers. The real part of the complex number is
the actual current or voltage. The complex current and voltage are
related to each other via the complex admittance or impedance: I =
YV or V = ZI. The admittances and impedances for the three circuit
elements R, L, C are given in Table 8.1. Admittances add in parallel,
and impedances add in series.

e We have presented three different methods for solving alternating-
current networks. See the summary at the end of Section 8.5.

e The average power delivered to a circuit is

- 1
P= 55010 €08 ¢ = Vimslims COS @, (8.93)

where the rms values are 1/+/2 times the peak values. This reduces to

Pg = mes /R in the case of a single resistor.

Problems
8.1  Linear combinations of solutions x
Homogeneous linear differential equations have the property that
the sum, or any linear combination, of two solutions is again a
solution. (“Homogeneous” means there’s a zero on one side of
the equation.) Consider, for example, the second-order equation
(although the property holds for any order),

AX+Bx+ Cx=0. (8.94)
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8.2

8.3

8.4

8.5

8.6

Show that if x1 (#) and x;(¢) are solutions, then the sum x () +x; ()
is also a solution. Show that this property does not hold for the
nonlinear differential equation A¥ + Bi> 4+ Cx = 0.

Solving linear differential equations xx
Consider the nth-order homogeneous linear differential equation
d"x d'x
anﬁ +ap—1 =1
Show that the solutions take the form of x(f) = A;e’i’, where the r;
depend on the a; coefficients. Hint: If the (d/dt) derivatives were
replaced by the letter z, then we would have an nth-order poly-
nomial in z, which we know can be factored, by the fundamental
theorem of algebra. (You can assume that the roots of this poly-
nomial are distinct. Things are a little more complicated if there
are double roots; this is discussed in the solution.)

d
+...+a1d—):+a0x:0, (895)

Underdamped motion s
A second-order homogeneous linear differential equation can be
written in the general form of

¥ 4+ 20k + wix =0, (8.96)

where « and wq are constants. (For the series RLC circuit in Sec-
tion 8.1, Eq. (8.2) gives these constants as « = R/2L and a)(z) =
1/LC.) From Problem 8.2 we know that there are two independent
exponential solutions to this equation. Find these two solutions,
and then show that, in the underdamped case where o < wy, the
general solution can be written in the form of Eq. (8.10).

Overdamped RLC circuit s

Find the constants 81 and B, in Eq. (8.15) by plugging an expo-
nential trial solution into Eq. (8.2). If R is very large, what does
the solution look like for large #?

Change in frequency s

For the decaying signal shown in Exercise 8.19, estimate the per-
centage by which the frequency differs from the natural frequency
1/+/LC of the circuit.

Limits of an RLC circuit s

(a) In the R — 0 limit, verify that the solution in Eq. (8.4) cor-
rectly reduces to the solution for an LC circuit. That is, show
that the voltage behaves like cos wt.

(b) In the L — 0 limit, verify that the solution in Eq. (8.15) cor-
rectly reduces to the solution for an RC circuit. That is, show
that the voltage behaves like e ~//RC. You will need to use the
results from Problem 8.4.
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8.7

8.8

8.9

8.10

8.11

(c) Inthe C — oo limit, verify that the solution in Eq. (8.15) cor-
rectly reduces to the solution for an RL circuit. That is, show
that the voltage behaves like e~ ®/D’ up to an additive con-
stant. What is the physical meaning of this constant?

Magnitude and phase

Show that a + bi can be written as Ipe'®, where Iy = va2 + b2 and
¢ =tan"'(b/a).

RLC circuit via vectors s
(a) The loop equation for the series RLC in Fig. 8.26 is
dl 0
L— 4+ Rl + = = &ycos wt, 8.97
7 c =% (8.97)
where we have taken positive / to be clockwise and Q to be the
charge on the right plate of the capacitor. If / takes the form of
1(t) = Ip cos(wt + ¢), show that Eq. (8.97) can be written as

wLly cos(wt + ¢ + 7/2) + Rl cos(wt + ¢)

I
+ —OC cos(wt +¢ — /2) = Egcoswt.  (8.98)
w

(b) At any given time, the four terms in Eq. (8.98) can be consid-
ered to be the real parts of four vectors in the complex plane.
Draw the appropriate quadrilateral that represents the fact that
the sum of the three terms on the left side of the equation
equals the term on the right side.

(c) Use your quadrilateral to determine the amplitude /p and phase
¢ of the current, and check that they agree with the values in
Eqs. (8.38) and (8.39).

Drawing the complex vectors s

For the series and parallel RLC circuits in Figs. 8.10 and 8.20, draw
the vectors representing all of the complex voltages and currents.
For the sake of making a concrete picture, assume that R = |Z; | =
2|Zc|. The vectors all rotate around in the complex plane, so you
can draw them at whatever instant in time you find most conve-
nient.

Real impedance

Is it possible to find a frequency at which the impedance at the
terminals of the circuit in Fig. 8.27 will be purely real?

Light bulb

A 120 volt (rms), 60 Hz line provides power to a 40 watt light bulb.
By what factor will the brightness decrease if a 10 uF capacitor is
connected in series with the light bulb? (Assume that the bright-
ness is proportional to the power dissipated in the bulb’s resistor.)

Figure 8.26.

O

Figure 8.27.
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Vo

Figure 8.28.

A
R

Vo

O

Figure 8.29.

&y cos wt @

Figure 8.30.

Figure 8.31.

8.12  Fixed voltage magnitude xx

Let Vg = Vg — Vj in the circuit in Fig. 8.28. Show that |Vyp|* =
Vg for any frequency w. Find the frequency for which Vyp is 90°
out of phase with Vj.

8.13 Low-pass filter s

In Fig. 8.29 an alternating voltage V() cos wt is applied to the termi-
nals at A. The terminals at B are connected to an audio amplifier of
very high input impedance. (That is, current flow into the amplifier
is negligible.) Calculate the ratio \% |2/V§. Here |V, | is the abso-
lute value of the complex voltage amplitude at terminals B. Choose
values for R and C to make |V |2/Vg = 0.1 for a 5000 Hz signal.
This circuit is the most primitive of “low-pass” filters, providing
attenuation that increases with increasing frequency. Show that,
for sufficiently high frequencies, the signal power is reduced by a
factor 1/4 for every doubling of the frequency. Can you devise a
filter with a more drastic cutoff — such as a factor 1/16 per octave?

Series RLC power s

Consider the series RLC circuit in Fig. 8.10. Show that the aver-
age power delivered to the circuit, which is given in Eq. (8.84),
equals the average power dissipated in the resistor, which is given
in Eq. (8.80). (These equations are a little easier to work with than
the equivalent rms equations, Egs. (8.85) and (8.81).)

Two inductors and a resistor s

The circuit in Fig. 8.30 has two equal inductors L and a resis-
tor R. The frequency of the emf source, & cos wt, is chosen to be
w=R/L.

(a) What is the total complex impedance of the circuit? Give it in
terms of R only.

(b) If the total current through the circuit is written as Iy cos(wt +
¢), what are Iy and ¢?

(c) What is the average power dissipated in the circuit?

Exercises

8.16 Voltages and energies

Consider the LC circuit in Fig. 8.31. Initial conditions have been
set up so that the voltage change across the capacitor (proceeding
around the loop in a clockwise manner) equals Vj cos wt, where
w = 1/+/LC. Att = 0, what are the voltage changes (proceeding
clockwise) across the capacitor and inductor? Where is the energy
stored? Answer the same questions for t = 7 /2w.



Exercises

425

10° ohms

20 volts

8.17

8.18

8.19

8.20

Amplitude after Q cycles x
In the RLC circuit in Section 8.1, show that the current (or voltage)
amplitude decreases by a factor of ™" & 0.043 after Q cycles.

Effect of damping on frequency s

Using Eqgs. (8.9) and (8.13), express the effect of damping on the
frequency of a series RLC circuit, by writing w in terms of Q and
wo = 1/+/LC. Suppose enough resistance is added to bring Q from
oo down to 1000. By what percentage is the frequency w thereby
shifted from wo? How about if Q is brought from co down to 5?

Decaying signal sx

The coil in the circuit shown in Fig. 8.32 is known to have an induc-
tance of 0.01 henry. When the switch is closed, the oscilloscope
sweep is triggered. The 10° ohm resistor is large enough (as you
will discover) so that it can be treated as essentially infinite for
parts (a) and (b) of this problem.

(a) Determine as well as you can the value of the capacitance C.

(b) Estimate the value of the resistance R of the coil.

(c) What is the magnitude of the voltage across the oscilloscope
input a long time, say 1 second, after the switch has been
closed?

Resonant cavity s

A resonant cavity of the form illustrated in Fig. 8.33 is an essen-
tial part of many microwave oscillators. It can be regarded as a
simple LC circuit. The inductance is that of a rectangular toroid
with one turn; see Eq. (7.62). This inductor is connected directly
to a parallel-plate capacitor. Find an expression for the resonant
frequency of this circuit, and show by a rough sketch the configu-
ration of the magnetic and electric fields.

Figure 8.32.

Figure 8.33.
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Figure 8.34.
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Figure 8.35.

8.21

8.22

8.23

8.24

8.25

8.26

Solving an RLC circuit s

In the resonant circuit in Fig. 8.34 the dissipative element is a
resistor R’ connected in parallel, rather than in series, with the
LC combination. Work out the equation, analogous to Eq. (8.2),
that applies to this circuit. Find also the conditions on the solution
analogous to those that hold in the series RLC circuit. If a series
RLC and a parallel R'LC circuit have the same L, C, and Q (quality
factor, not charge), how must R’ be related to R?

Overdamped oscillator s

For the circuit in Fig. 8.4(a), determine the values of 81 and >
for the overdamped case, with R = 600 ohms. Determine also the
ratio of B to A, the constants in Eq. (8.15). You can use the results
from Problem 8.4.

Energy in an RLC circuit s

For the damped RLC circuit of Fig. 8.2, work out an expression for
the total energy stored in the circuit (the energy in the capacitor
plus the energy in the inductor) at any time ¢, for all three of the
underdamped, overdamped, and critically damped cases; you need
not simplify your answers. If R is varied while L and C are kept
fixed, show that the critical damping condition, R = 2./L/C, is
the one in which the total energy is most quickly dissipated. (The
exponential behavior is all that matters here.) The results from
Problem 8.4 will be useful.

RC circuit with a voltage source 3

A voltage source &) cos wt is connected in series with a resistor R
and a capacitor C. Write down the differential equation expressing
Kirchhoff’s law. Then guess an exponential form for the current,
and take the real part of your solution to find the actual current.
Determine how the amplitude and phase of the current behave for
very large and very small w, and explain the results physically.

Light bulb s

How large an inductance should be connected in series with a
120 volt (rms), 60 watt light bulb if it is to operate normally when
the combination is connected across a 240 volt, 60 Hz line? (First
determine the inductive reactance required. You may neglect the
resistance of the inductor and the inductance of the light bulb.)

Label the curves sx

The four curves in Fig. 8.35 are plots, in some order, of the applied
voltage and the voltages across the resistor, inductor, and capaci-
tor of a series RLC circuit. Which is which? Whose impedance is
larger, the inductor’s or the capacitor’s?
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8.27

8.28

8.29

8.30

8.31

8.32

8.33

RLC parallel circuit =

A 1000 ohm resistor, a 500 picofarad capacitor, and a 2 millihenry
inductor are connected in parallel. What is the impedance of this
combination at a frequency of 10 kilocycles per second? At a fre-
quency of 10 megacycles per second? What is the frequency at
which the absolute value of the impedance is greatest?

Small impedance

Consider the circuit in Fig. 8.36. The frequency is chosen to be
w = 1/+/LC. Given L and C, how should you pick R so that the
impedance of the circuit is small?

Real impedance
Is it possible to find a frequency at which the impedance at the
terminals of the circuit in Fig. 8.37 will be purely real?

Equal impedance?

Do there exist values of R, L, and C for which the two circuits
in Fig. 8.38 have the same impedance? (The resistor R has the
same value in both.) Can you give a physical explanation why or
why not?

Zero voltage difference s

Show that, if the condition R1R, = L/C is satisfied by the compo-
nents of the circuit in Fig. 8.39, the difference in voltage between
points A and B will be zero at any frequency. Discuss the suitabil-
ity of this circuit as an ac bridge for measurement of an unknown
inductance.

Finding L *x

In the laboratory you find an inductor of unknown inductance
L and unknown internal resistance R. Using a dc ohmmeter, an
ac voltmeter of high impedance, a 1 microfarad capacitor, and a
1000 Hz signal generator, determine L and R as follows. According
to the ohmmeter, R is 35 ohms. You connect the capacitor in series
with the inductor and the signal generator. The voltage across both
is 10.1 volts. The voltage across the capacitor alone is 15.5 volts.
You note also, as a check, that the voltage across the inductor alone
is 25.4 volts. How large is L? Is the check consistent?

Equivalent boxes
Show that the impedance Z at the terminals of each of the two
circuits in Fig. 8.40 is (ignoring the units)

5000 + 16 - 10 3w? — 16iw
7 =
14+ 16-10"%w?

Since they present, at any frequency, the identical impedance, the
two black boxes are completely equivalent and indistinguishable

(8.99)

)

Figure 8.36.

;

—C
Figure 8.37.
o
%e
R % L
—r
L o
Figure 8.38.
1. .
o B
Vo A
o L
Rl
Figure 8.39.
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8.34

8.35

8.36

from the outside. See if you can discover the general rules for find-
ing the resistances and capacitance in the bottom box, given the
resistances and capacitance in the top box.

LC chain
The box in Fig. 8.41(a) with four terminals contains a capacitor
C and two inductors of equal inductance L connected as shown.
An impedance Zj is to be connected to the terminals on the right.
For given frequency w, find the value that Zy must have if the
resulting impedance between the terminals on the left (the “input”
impedance) is to be equal to Zp.

(You will find that the required value of Z is a pure resistance
Ro provided that > < 2/LC. A chain of such boxes could be con-
nected together to form a ladder network resembling the ladder of
resistors in Exercise 4.36. If the chain is terminated with a resistor
of the correct value Ry, its input impedance at frequency o will be
Rp, no matter how many boxes make up the chain.)

What is Z in the special case w = /2/LC? It helps in under-
standing that case to note that the contents of the box (a) can be
equally well represented by box (b).

RC circuit sx

A 2000 ohm resistor and a 1 microfarad capacitor are connected in
series across a 120 volt (rms), 60 Hz line.

(a) What is the total impedance?

(b) What is the rms value of the current?

(c) What is the average power dissipated in the circuit?

(d) What will be the reading of an ac voltmeter connected across
the resistor? Across the capacitor?

(e) The left and right plates of a cathode ray tube are connected
across the resistor, and the top and bottom plates are connected
across the capacitor. The horizontal and vertical axes of the
tube’s screen therefore indicate the voltages across the resistor
and capacitor, respectively. Sketch the pattern that you expect
to see on the screen. From the given information, is it possible
to determine the direction in which the pattern is traced out?

High-pass filter s

Consider the setup in Problem 8.13, but with the capacitor replaced
by an inductor. Calculate the ratio V1|2 / Vg. Choose values for R
and L to make |V;|? / Vg = 0.1 for a 100 Hz signal. This circuit is
the most primitive of “high-pass” filters, providing attenuation that
increases with decreasing frequency. Show that, for sufficiently
low frequencies, the signal power is reduced by a factor 1/4 for
every halving of the frequency.
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8.37

8.38

Parallel RLC power s
Repeat the task of Problem 8.14, but now for the parallel RLC cir-
cuit in Fig. 8.20.

Two resistors and a capacitor s

The circuit in Fig. 8.42 has two equal resistors R and a capacitor C.

The frequency of the emf source, & cos wt, is chosen to be w =

1/RC.

(a) What is the total complex impedance of the circuit? Give it in
terms of R only.

(b) If the total current through the circuit is written as Iy cos(wt +
¢), what are Iy and ¢?

(c) What is the average power dissipated in the circuit?

50cosan@ CR R§
|

Figure 8.42.






